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UP-GROWTH++ ALGORITHM FOR MINING 
HIGH UTILITY ITEMSETS  

V.T.Shenbagamuthu, D.Prabha,  

 
Abstract— The efficient discovery of high utility itemset from large transaction database is a crucial task of data 
mining. In past, many relevant algorithms have been presented. These algorithms surface the problem of generating large 
number of candidate itemset and thus degrade the mining performance in terms of execution time and space. In this 
paper, three algorithms are presented, such as EUP-Growth (utility pattern) for mining high utilty itemset for pruning 
candidate itemsets. In these algorithms, compact tree structure (EUP-Tree) is used for discovering the useful itemset so 
that candidate item is generated with only two scan of database. The performance of EUP-Growth and is compared with 
the state of-the algorithm for both real and synthetic data sets. Experimental results shown that the proposed algorithm 
reduce the number of candidates effectively but also outperform other algorithms substantially in terms of runtime even 
when databases contain lots of long transactions 
 

Index Terms— high utility itemset, frequent itemset, candidate pruning, utility mining, 

——————————      —————————— 
 

1 INDROTUCTION 

Data mining is one of the best analytical tools 
for analyzing data. It allows users to analyze 
data from many different dimensions or 
angles, categorizes it, and summarizes it into 
useful information. Technically, data mining is 
the process of finding correlations or patterns 
among dozens of fields in large relational 
databases. Data mining commonly 
encompasses a variety of algorithms namely 
clustering, classification, association rule 
mining, regression, summarization and 
prediction. Among these algorithms, 
Association rules mining (ARM) is one of the 
most widely used techniques in data mining 
and knowledge discovery and has tremendous 
applications in business, science and other 
domains. The main objective of ARM is to 
identify frequently occurring patterns of 
itemsets.  
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It first finds all the itemsets whose co-
occurrence frequency are beyond a minimum 
support threshold, and then generates rules 
from the frequent itemsets based on a 
minimum confidence threshold. Traditional 
ARM model treat all the items in the database 
equally by only considering if an item is 
present in a transaction or not.  
 
The frequent itemsets identified by ARM does 
not reflect the impact of any other factor 
except frequency of the presence or absence of 
an item. Frequent itemset mining is a 
fundamental research topic with wide data 
mining Applications. Extensive studies have 
been proposed for mining frequent itemsets 
from the databases and successfully adopted 
in various application domains. In market 
analysis, mining frequent itemsets from a 
transaction database refers to the discovery of 
the itemsets which frequently appear together 
in the transactions. However, the unit profits 
and purchased quantities of items are not 
considered in frequent itemset mining. To 
address this problem, weighted association 
rule mining was proposed. In this framework, 
weights of items, such as unit profits of items 
in transaction databases, are considered. In 
this concept, even if some items appear 
infrequently, they might still be found if they 
have high weights. However, in this 
framework, the quantities of items are not 
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considered yet. Therefore it utility mining [ 4, 
5,6, 7, ] emerges as an important topic in data 
mining for discovering the itemsets with high 
utility like profits. The basic meaning of utility 
is the interestedness/importance /profitability 
of items to the users. Mining high utility 
itemsets from databases is an important task 
which is essential to a wide range of 
applications such as website click streaming 
analysis, cross-marketing in retail stores, 
business promotion in chain hypermarkets 
and even biomedical applications. 

 
In recent years ,there are many algorithms 
proposed for discovering the high utility 
itemset,but these algorithms produced large 
number of candidate itemset.so mining 
performance degraded such that in terms of  
execution time  and  memory consumption. 
The utility of items in a transaction database 
consists of two aspects: (1) the importance of 
distinct items, which is called external utility, 
and (2) the importance of the items in the 
transaction, which is called internal utility. The 
utility of an itemset is defined as the external 
utility multiplied by the internal utility. An 
itemset is called a high utility itemset if its 
utility is no less than a user specified 
threshold; otherwise, the itemset is called a low 
utility itemset. 
 
There is no efficient strategy to find all the 
high utility itemsets due to the non existence 
of “downward closure property” (anti-
monotone property) in the utility mining 
model. In other words, pruning search space 
for high utility itemset mining is difficult 
because a superset of a low utility itemset may 
be a high utility itemset . This Limitations 
achieved by UP –Growth++ algorithms. In UP-
Growth++, use compact tree structure called 
EUP -Tree .the information of high utility are 
storing into the EUP-Tree for discovering the 
utility itemset, such that candidate itemset 
generated with two scan of database. It reduce 
the execution time and memory consumption. 
 
Many existing studies produce overestimated 
utilities to facilitate the mining performance of 
utility mining. To address this issue, propose a 
novel algorithm with a compact data structure 
for efficiently discovering high utility itemsets 
from transactional databases. The major steps 
of this work are summarized as follows: 
 

1. A novel algorithm, called UP-Growth++ ( 
Utility Pattern Growth),is proposed for 
discovering high utility itemsets. 
Correspondingly, a compact tree structure, 
called EUP-Tree (Enhanced Utility Pattern 
Tree), is proposed to maintain the important 
information of the transaction database related 
to the utility patterns. High utility itemsets are 
then generated from the EUP-Tree efficiently 
with only two scans of the database. 
 
2. Four strategies are proposed for efficient 
construction of EUP-Tree and the processing 
in UP-Growth++. By these strategies,the 
estimated utilities of candidates can be well 
reduced by discarding the utilities of the items 
which are impossible to be high utility or not 
involved in the search space.  
 
3. Both of synthetic and real datasets are used 
in experimental evaluations to compare the 
performance of UP-Growth++ with the state-
of-the-art utility mining algorithms. The 
experimental resultsshow  that  UP-Growth++  
outperforms  other  algorithms substantially 
in terms of execution time, especially when the 
database contains lots of long ransactions. 
 

TABLE 1 
 

An Example Database 
 
ID TRANSACTION TU 
T1 (A,1)(C,1)(D,1) 17 
T2 (A,2)(C,6)(E,2)(G,5) 27 
T3 (A,1)(B,2)(C,1)(D,6)(E,1)(F,5) 37 
T4 (B,4)(C,3)(D,3)(E,1) 30 
T5 (B,2)(C,2)(E,1)(G,2) 13 

 
TABLE 2 

 
Profit table 

 
ITEM A B C D E F G 
PROFIT 5 2 1 2 3 5 1 
 
Min_util = 50 
 
 
 
2 PROBLEM DEFINITIONS 
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Given a finite set of items I = {i1, i2, …, im}. 
Each item ip (1 ≤ p ≤m) has a unit profit p(ip). 
An itemset X is a set of k distinct items {i1, i2, 
…, ik}, where ij є I, 1≤ j ≤ k, and k is the length 
of X. An itemset with length k is called k-
itemset. A transaction database D= {T1, T2, …, 
Tn} contains a set of transactions, and each 
transaction Td (1 ≤ d ≤ n) has an unique 
identifier d, called TID.Each item ip in the 
transaction Td is associated with a quantity 
q(ip, Td), that is, the purchased number of ip in 
Td. 
 
Definition 1. The utility of an item ip in the 
transaction Td is denoted as u(ip, Td) and 
defined as p(ip) × q(ip, Td). For example,in Table 
1, u({A}, T1) = 5 × 1 = 5. 
 
Definition 2. The utility of an itemset X in Td 
is denoted as u(X, Td) and defined as ∑ip є X 
˄X ⊆Td u(ip ,Td ) . For example, u({AC}, T1) 
=u({A}, T1) + u({C}, T1) = 5 + 1 = 6. 
 
Definition 3. An itemset is called a high utility 
itemset if its utility is no less than a user-
specified minimum utility threshold which is 
denoted as min_util. Otherwise; it is called a 
low utility itemset. 
 
 Given a transaction database D and a user-
specified minimum utility threshold min_util, 
mining high utility itemsets from the 
transaction database is equivalent to discover 
from D all itemsets whose utilities are no less 
than min_util.After addressing the problem 
definition of utility mining, introduce the 
transaction-weighted downward closure. 
 
Definition 5. The transaction utility of a 
transaction Td is denoted as TU(Td) and 
defined as u(Td, Td). For example, TU(T1) = 
u({ACD}, T1) = 8. 
 
Definition 6. The transaction-weighted 
utilization of an itemset X is the sum of the 
transaction utilities of all the transactions 
containing X, which is denoted as TWU(X).. 
For example, TWU({AD}) = TU(T1) +TU(T3) = 8 
+ 30 = 38. If TWU(X) is no less than the 
minimum utility threshold, X is called a high 
transaction-weighted utilization itemset 
(abbreviated as HTWUI). 
 
Definition7. The transaction-weighted downward 
closure, which is abbreviated as TWDC, is 
stated as follows. For any itemset X, if X is not 

a HTWUI, any superset of X is a low utility 
itemset. By this definition, the downward 
closure property can be maintained by using 
transaction-weighted utilization. For example, 
in Table 1,any superset of {AD} is a low utility 
itemset since TWU({AD}) < min_util 
 
3 EXISTING SYSTEM 
 
In the past ten years, a number of traditional 
ARM algorithms have been proposed. The 
general assumption of them is that each item 
in a database is treated equally.  All of these 
algorithms exploit the “downward closure 
property” as proposed in Apriori [1]. The tree-
based approaches such as FP-Growth [2] were 
proposed. It’s widely recognized that FP-
Growth achieves a better performance than 
Apriori-based approaches since it finds 
frequent itemsets without generating any 
candidate itemset and it scans database just 
twice.However, in the framework of frequent 
itemset mining the importance of items to 
users is not considered. The unit profits and 
purchased quantities of the items are not taken 
into considerations. An efficient association 
rules generation method, WFIM [3] approach 
is to push the weight constraints into the 
pattern growth algorithm while maintaining 
the downward closure property. In this paper, 
a weight range and a minimum weight 
constraint are defined and items are given 
different weights within the weight range. The 
weight and support of each item are 
considered separately for pruning the search 
space. But quantity not considered, so this 
paper can not discover the frequent itemset 
with high sale profit. 
 
Thus, some methods were proposed for 
mining high utility itemsets from the 
databases, such as Two-Phase [4], IIDS [5] and 
IHUP [6], UP growth [7] used to prune search 
space. Although it is shown to have good 
performance, it cannot capture the complete 
set of high utility itemsets since some high 
utility patterns may be pruned during the 
process. Two-Phase algorithm [4] proposed by 
Liu et al. consists of two phases. In phase I, 
Two-Phase algorithm propose a breadth first 
search strategy to generate HTWUIs. It 
generates candidate itemsets of length k from 
HTWUIs of length (k-1) and prunes candidate 
itemsets by TWDC property.In phase II, high 
utility itemsets and their utilities are identified 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014                                                         52 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

 

from the HTWUIs by scanning original 
database once. 
 
Although Two-Phase algorithm effectively 
reduces the search space by TWDC property 
and captures the complete set of high utility 
itemsets, it still generates too many candidates 
for HTWUIs and requires multiple database 
scans in phase II. To overcome this problem,Li 
et al. [5] proposed an isolated items discarding 
strategy, abbreviated as IIDS, to reduce the 
number of candidates. By pruning isolated 
items during the level-wise search, the number 
of candidate itemsets for HTWUIs in phase I 
can be reduced effectively. However, this 
approach still scans database multiple times 
and uses a candidate generation-and-test 
scheme to find high utility itemsets. 
 
Ahmed et al. [6] proposed a tree-based 
algorithm, called IHUP, for mining high utility 
itemsets. They use an IHUP-Tree to maintain 
the information of high utility itemsets and 
transactions. Every node in IHUP-Tree 
consists of an item name, a support count, and 
a TWU value. The HTWUIs are generated 
from the IHUP-Tree by applying the FP-
Growth algorithm [2]. Thus, HTWUIs in phase 
I can be found more efficiently without 
generating candidates for HTWUIs. In step 3, 
high utility itemsets and their utilities are 
identified from the set of HTWUIs by  
scanning the original database once.Although 
IHUP finds HTWUIs without generating any 
candidates for HTWUIs and achieves a better 
performance than IIDS and Two-Phase, it still 
produces too many HTWUIs in phase I. Note 
that IHUP and Two-Phase produce the same 
number of HTWUIs in phase I since they use 
transaction-weighted utilization mining model  
to overestimate the utilities of the itemsets. 
However, this model may overestimate too 
many low utility itemsets as HTWUIs and 
produce too many candidate itemsets in phase 
I.Such a large number of HTWUIs degrades 
the mining performance in phase I in terms of 
execution time and memory consumption.  
 
4 PROPOSED SYSTEM  
The framework of the proposed methods 
consists of three steps: 1) Scan the database 
twice to construct a global EUP Tree with the 
first two strategies .2) recursively generate 
PHUIs from global EUP-Tree and local EUP-
Trees by UP-Growth++ with the third and 
fourth Strategies. 3) identify actual high utility 

itemsets from the set of Note that we use a 
new term “potential high utility itemsets” to 
distinguish the patterns found by our methods 
from HTWUIs since our methods are not 
based on traditional TWU model. By our 
effective strategies, the set of PHUIs will 
become much smaller than the set of HTWUIs. 
 
STRDEGY 1: Removing Global Unpromising 
Items during Constructing a Global EUP-
Tree 

The construction of a global EUP-Tree can be 
performed with two scans of the original 
database. The global EUP-Tree is depicted in 
Figure 1 .In the first scan, TU of each 
transaction is computed. At the same time, 
TWU of each single item is also accumulated. 
Allocate the memory for TWU using Random 
Hashing memory. Allocate the memory space 
for the 1st item based on the hash function 

  h (k) = [(( (a . k) + b ) mod s ) mod n ] 
 
 By TWDC property, an item and its supersets 
are unpromising to be high utility item sets if 
its TWU is less than the minimum utility 
threshold. Such an item is called an 
unpromising item.  An item ip is called a 
promising item if TWU(ip) |min_util|. 
Otherwise it is called an unpromising item.The 
unpromising items removed from orginal 
database. New TU after pruning unpromising 
items is called reorganized transaction utility 
(abbreviated as RTU). RTU of a reorganized 
transaction Tr is denoted as RTU(Tr).  
 
STRADEGY 2: Reducing Global Node 
Utilities during Constructing a Global EUP-
Tree 
 It is shown that the tree-based 
framework for high utility item set mining 
applies the divide-and-conquer technique in 
mining processes. Thus, the search space can 
be divided into smaller subspaces.  By 
applying strategy RGN, the utilities of the 
nodes that are closer to the root of a global 
EUP-Tree are further reduced. RGN is 
especially suitable for, the more items a 
transaction contains, the more utilities can be 
discarded by RGN. In following subsections, 
we describe the process of constructing a 
global EUP-Tree(Figure ) with strategies RGU 
and RGN.By the strategies, overestimated 
utilities of item sets can be decreased and thus 
the number of PHUIs can be further reduced. 
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Figure 1 
 
STRADEGY 3: Removing Local Unpromising 
Items during Constructing a Local UP-Tree 
 The common method for generating 
patterns in tree based algorithms contains 
three steps: (1) Generate conditional pattern 
bases by tracing the paths in the original tree, 
(2) construct conditional trees by the 
information in conditional pattern bases and 
(3) mine patterns from the conditional trees. 
However, strategies RGU and RGN cannot be 
applied into conditional EUP-Trees since 
actual utilities of items in different transactions 
are not maintained in a global EUP-Tree. We 
cannot know actual utilities of unpromising 
items that need to be discarded in conditional 
pattern bases unless an additional database 
scan is performed. To overcome this problem, 
a naïve solution is to maintain items’ actual 
utilities in each transaction into each node of 
global EUP-Tree. However, this is impractical 
since it needs lots of memory space. In view of 
this, we propose two strategies, named RLU 
and RLN, that are applied in the first two 
mining steps and introduced in this and next 
subsections, respectively. 
 
STRADEGY 4: Reducing Local Node Utilities 
(RLN) during Constructing a Local EUP-Tree 
 Since {im}-Tree must not contain the 
information about the items below im in the 
original EUP-Tree, we can discard the utilities 
of descendant nodes related to im in the 
original EUP-Tree while building {im}-Tree. 
Because we cannot know actual utilities of the 
descendant nodes, we use minimum item 
utilities to estimate the discarded utilities. Path 
utility of item ik in {im}-CPB is denoted as 
pu(ik,{im}-CPB) and defined as the following  
Equation 1: 

 
                                                          1 

A conditional EUP-Tree can be constructed by 
two scans of a conditional pattern base. It is 
depicted in figure2. For the first scan, local 
promising and unpromising items are learned 
by summing the path utility for each item in 
the conditional pattern base. Then, RLU is 
applied to reduce overestimated utilities 
during the second scan of the conditional 
pattern base. When a path is retrieved, 
unpromising items and their estimated utilities 
are eliminated from the path and its path 
utility. Then the path is reorganized by the 
descending order of path utility of the items in 
the conditional pattern base. 

 
Figure 2(B-Tree with different strategies) 
 
The complete set of PHUIs is generated by 
recursively calling the procedure named EUP-
Growth. Initially,UP-Growth++ (TR, HR, null) 
is called, where TR is the global EUP-Tree and 
HR is the global header table. The procedure 
of UP-Growth++ is shown in algorithm 1 and 
2: 

 
Subroutine: UP-Growth++(Tx, Hx, X) 
Input:A EUP-Tree Tx , a header table Hx for 
Tx, an itemset X, and a minimum utility 
threshold min_util.  

Output: All PHUIs in Tx. 
(1)For each entry ik in Hx do 

(2)  Trace each node related to ik vai 
ik.hlink and accumulate ik.nu to nusum(ik); 
            /* nusum(ik):the sum of node utilities of 
ik*/ Allocate the memory for nusum(ik)using RH . 
(3)    If nusum(ik) ≥ min_util,do 
(4)    Generate a PHUI ν=XUik; 
(5)     Set pu(ik) as estimated utility of ν; 
(6)    Construct ν-CPB; 
(7)   Put local promising items in ν-CPB into 
Hν 

(8)  Apply DLU to reduce path utilities of the 
paths; 
(9)Apply Insert_Reorgnized_path to insert paths 
into Tν with DLN; 
(10) If Tν ≠ null then call UP-
Growth++(Tν,Hν,ν); 
(11)      End if 
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(12) End for 
Algorithm: 1 

 
Subroutine:Insert_Reorganized_Path(N,ix) 
Line 1:If N has a child Niy,such that 
Nix.item=ix,increment Nix.count by 
Pj.count.otherwise,create a new child  node Nix 
with Nix.item=ix, 
Nix.count=Pj.count,Nix.parent=N and                                                                           
 Nix.nu=0.  
Line 2:Increase Nix.nu by Eq(3). 
Line 3:If there exists a node Nix in pj  
where x+1<m’,  
call Insert_Reorganized_path(Nix,ix+1) 

Algorithm 2 
 
5 EXPERIMENTAL EVALUATION  
Performance of the proposed algorithms is 
evaluated in this section. The experiments 
were performed on a 2.80 GHz Intel Pentium 
D Processor with 3.5 GB memory. The 
operating system is Microsoft Windows 7. The 
algorithms are implemented in Java language. 
Both real and synthetic data sets are used in 
the experiments. Synthetic data sets were 
generated from the data generator Parameter 
descriptions and default values of synthetic 
data sets are shown in Table 3. Real world data 
sets Accidents and chess are obtained from 
FIMI Repository Foodmart is acquired from 
Microsoft foodmart 2000 database. In the 
above data sets, except Chain-store and 
Foodmart, unit profits for items in utility 
tables are generated between 1 and 1,000 by 
using a log-normal distribution and quantities 
of items are generated randomly between 1 
and 10. The two real data sets Chain-store and 
Foodmart already contain unit profits and 
purchased quantities.  

TABLE 3 
PARAMETER SETTING DIFFERENT 

DATASETS 
PARAMETER DESCRIPTIONS DEFAU

LT 

|D| Total number of transaction 100K 

T Average transaction length 10 

|I|  Number of distinct items 1000 

Q Maximum number of purchased 
items in tranactions 

10 

 
 
6 PERFORMANCE COMPARISONS UNDER 
DIFFERENT DATASETS 
 
In this part, we show the performance 
comparison on three real data sets: dense data 
set Web log and sparse data sets Chain-store. 
First, we show the results on sparse data set 
Chain store in Fig. 3 and 3a. In this graph we 
can observe that the performance of proposed  
methods substantially outperforms that of 
previous methods. The runtime of  
EUPT&UPG++ is the best. 
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Figure 3                                                         

Memory usage for various algorithms
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Figure 3a 
 
Experimental results on real sparse data sets 
are shown in Fig. 10. The performance on 
dense dataset Web log shown in Fig4 and 4a 
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Figure 4a 

Memory usage for various algorithms
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By the above results and discussions, we can 
realize that Enhanced UP-Tree, Enhanced UP-
Growth, efficiently decrease the number of 
candidates and make the performance much 
better than that of the state-of-the-art previous 
utility mining algorithms . 
 
7 CONCLUSIONS 
In this paper, proposed efficient algorithm 
named UP-Growth++ for mining high utility 
itemsets from transaction databases. A data 
structure named EUP-Tree was proposed for 
maintaining the information of high utility 
itemsets. PHUIs can be efficiently generated 
from EUP-Tree with only two database scans. 
Moreover, developed several strategies to 
decrease overestimated utility and enhance the 
performance of utility mining. In the 
experiments, both real and synthetic data sets 
were used to perform a thorough performance 
evaluation. Results show that the strategies 
considerably improved performance by 
reducing both the search space and the 
number of candidates.  
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