
International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 49
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

UP-GROWTH++ ALGORITHM FOR MINING
HIGH UTILITY ITEMSETS

V.T.Shenbagamuthu, D.Prabha,

Abstract— The efficient discovery of high utility itemset from large transaction database is a crucial task of data
mining. In past, many relevant algorithms have been presented. These algorithms surface the problem of generating large
number of candidate itemset and thus degrade the mining performance in terms of execution time and space. In this
paper, three algorithms are presented, such as EUP-Growth (utility pattern) for mining high utilty itemset for pruning
candidate itemsets. In these algorithms, compact tree structure (EUP-Tree) is used for discovering the useful itemset so
that candidate item is generated with only two scan of database. The performance of EUP-Growth and is compared with
the state of-the algorithm for both real and synthetic data sets. Experimental results shown that the proposed algorithm
reduce the number of candidates effectively but also outperform other algorithms substantially in terms of runtime even
when databases contain lots of long transactions

Index Terms— high utility itemset, frequent itemset, candidate pruning, utility mining,

—————————— ——————————

1 INDROTUCTION

Data mining is one of the best analytical tools
for analyzing data. It allows users to analyze
data from many different dimensions or
angles, categorizes it, and summarizes it into
useful information. Technically, data mining is
the process of finding correlations or patterns
among dozens of fields in large relational
databases. Data mining commonly
encompasses a variety of algorithms namely
clustering, classification, association rule
mining, regression, summarization and
prediction. Among these algorithms,
Association rules mining (ARM) is one of the
most widely used techniques in data mining
and knowledge discovery and has tremendous
applications in business, science and other
domains. The main objective of ARM is to
identify frequently occurring patterns of
itemsets.

————————————————

• V.T.Shenbagamuthu is currently pursuing masters of
engineering in computer science and engineering from Sri
Krishna college of engineering and technology,Coimbatore
, PH-9655753876. E-mail: shenbagamuthuvt@gmail.com

• D.Prabha is currently working as a assistant Professor in
Sri Krishna college of engineering and technology,
Coimbatore, PH-7373350567. E-mail: prabha@skcet.ac.in

It first finds all the itemsets whose co-
occurrence frequency are beyond a minimum
support threshold, and then generates rules
from the frequent itemsets based on a
minimum confidence threshold. Traditional
ARM model treat all the items in the database
equally by only considering if an item is
present in a transaction or not.

The frequent itemsets identified by ARM does
not reflect the impact of any other factor
except frequency of the presence or absence of
an item. Frequent itemset mining is a
fundamental research topic with wide data
mining Applications. Extensive studies have
been proposed for mining frequent itemsets
from the databases and successfully adopted
in various application domains. In market
analysis, mining frequent itemsets from a
transaction database refers to the discovery of
the itemsets which frequently appear together
in the transactions. However, the unit profits
and purchased quantities of items are not
considered in frequent itemset mining. To
address this problem, weighted association
rule mining was proposed. In this framework,
weights of items, such as unit profits of items
in transaction databases, are considered. In
this concept, even if some items appear
infrequently, they might still be found if they
have high weights. However, in this
framework, the quantities of items are not

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 50
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

considered yet. Therefore it utility mining [4,
5,6, 7,] emerges as an important topic in data
mining for discovering the itemsets with high
utility like profits. The basic meaning of utility
is the interestedness/importance /profitability
of items to the users. Mining high utility
itemsets from databases is an important task
which is essential to a wide range of
applications such as website click streaming
analysis, cross-marketing in retail stores,
business promotion in chain hypermarkets
and even biomedical applications.

In recent years ,there are many algorithms
proposed for discovering the high utility
itemset,but these algorithms produced large
number of candidate itemset.so mining
performance degraded such that in terms of
execution time and memory consumption.
The utility of items in a transaction database
consists of two aspects: (1) the importance of
distinct items, which is called external utility,
and (2) the importance of the items in the
transaction, which is called internal utility. The
utility of an itemset is defined as the external
utility multiplied by the internal utility. An
itemset is called a high utility itemset if its
utility is no less than a user specified
threshold; otherwise, the itemset is called a low
utility itemset.

There is no efficient strategy to find all the
high utility itemsets due to the non existence
of “downward closure property” (anti-
monotone property) in the utility mining
model. In other words, pruning search space
for high utility itemset mining is difficult
because a superset of a low utility itemset may
be a high utility itemset . This Limitations
achieved by UP –Growth++ algorithms. In UP-
Growth++, use compact tree structure called
EUP -Tree .the information of high utility are
storing into the EUP-Tree for discovering the
utility itemset, such that candidate itemset
generated with two scan of database. It reduce
the execution time and memory consumption.

Many existing studies produce overestimated
utilities to facilitate the mining performance of
utility mining. To address this issue, propose a
novel algorithm with a compact data structure
for efficiently discovering high utility itemsets
from transactional databases. The major steps
of this work are summarized as follows:

1. A novel algorithm, called UP-Growth++ (
Utility Pattern Growth),is proposed for
discovering high utility itemsets.
Correspondingly, a compact tree structure,
called EUP-Tree (Enhanced Utility Pattern
Tree), is proposed to maintain the important
information of the transaction database related
to the utility patterns. High utility itemsets are
then generated from the EUP-Tree efficiently
with only two scans of the database.

2. Four strategies are proposed for efficient
construction of EUP-Tree and the processing
in UP-Growth++. By these strategies,the
estimated utilities of candidates can be well
reduced by discarding the utilities of the items
which are impossible to be high utility or not
involved in the search space.

3. Both of synthetic and real datasets are used
in experimental evaluations to compare the
performance of UP-Growth++ with the state-
of-the-art utility mining algorithms. The
experimental resultsshow that UP-Growth++
outperforms other algorithms substantially
in terms of execution time, especially when the
database contains lots of long ransactions.

TABLE 1

An Example Database

ID TRANSACTION TU
T1 (A,1)(C,1)(D,1) 17
T2 (A,2)(C,6)(E,2)(G,5) 27
T3 (A,1)(B,2)(C,1)(D,6)(E,1)(F,5) 37
T4 (B,4)(C,3)(D,3)(E,1) 30
T5 (B,2)(C,2)(E,1)(G,2) 13

TABLE 2

Profit table

ITEM A B C D E F G
PROFIT 5 2 1 2 3 5 1

Min_util = 50

2 PROBLEM DEFINITIONS

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 51
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Given a finite set of items I = {i1, i2, …, im}.
Each item ip (1 ≤ p ≤m) has a unit profit p(ip).
An itemset X is a set of k distinct items {i1, i2,
…, ik}, where ij є I, 1≤ j ≤ k, and k is the length
of X. An itemset with length k is called k-
itemset. A transaction database D= {T1, T2, …,
Tn} contains a set of transactions, and each
transaction Td (1 ≤ d ≤ n) has an unique
identifier d, called TID.Each item ip in the
transaction Td is associated with a quantity
q(ip, Td), that is, the purchased number of ip in
Td.

Definition 1. The utility of an item ip in the
transaction Td is denoted as u(ip, Td) and
defined as p(ip) × q(ip, Td). For example,in Table
1, u({A}, T1) = 5 × 1 = 5.

Definition 2. The utility of an itemset X in Td
is denoted as u(X, Td) and defined as ∑ip є X
˄X ⊆Td u(ip ,Td) . For example, u({AC}, T1)
=u({A}, T1) + u({C}, T1) = 5 + 1 = 6.

Definition 3. An itemset is called a high utility
itemset if its utility is no less than a user-
specified minimum utility threshold which is
denoted as min_util. Otherwise; it is called a
low utility itemset.

 Given a transaction database D and a user-
specified minimum utility threshold min_util,
mining high utility itemsets from the
transaction database is equivalent to discover
from D all itemsets whose utilities are no less
than min_util.After addressing the problem
definition of utility mining, introduce the
transaction-weighted downward closure.

Definition 5. The transaction utility of a
transaction Td is denoted as TU(Td) and
defined as u(Td, Td). For example, TU(T1) =
u({ACD}, T1) = 8.

Definition 6. The transaction-weighted
utilization of an itemset X is the sum of the
transaction utilities of all the transactions
containing X, which is denoted as TWU(X)..
For example, TWU({AD}) = TU(T1) +TU(T3) = 8
+ 30 = 38. If TWU(X) is no less than the
minimum utility threshold, X is called a high
transaction-weighted utilization itemset
(abbreviated as HTWUI).

Definition7. The transaction-weighted downward
closure, which is abbreviated as TWDC, is
stated as follows. For any itemset X, if X is not

a HTWUI, any superset of X is a low utility
itemset. By this definition, the downward
closure property can be maintained by using
transaction-weighted utilization. For example,
in Table 1,any superset of {AD} is a low utility
itemset since TWU({AD}) < min_util

3 EXISTING SYSTEM

In the past ten years, a number of traditional
ARM algorithms have been proposed. The
general assumption of them is that each item
in a database is treated equally. All of these
algorithms exploit the “downward closure
property” as proposed in Apriori [1]. The tree-
based approaches such as FP-Growth [2] were
proposed. It’s widely recognized that FP-
Growth achieves a better performance than
Apriori-based approaches since it finds
frequent itemsets without generating any
candidate itemset and it scans database just
twice.However, in the framework of frequent
itemset mining the importance of items to
users is not considered. The unit profits and
purchased quantities of the items are not taken
into considerations. An efficient association
rules generation method, WFIM [3] approach
is to push the weight constraints into the
pattern growth algorithm while maintaining
the downward closure property. In this paper,
a weight range and a minimum weight
constraint are defined and items are given
different weights within the weight range. The
weight and support of each item are
considered separately for pruning the search
space. But quantity not considered, so this
paper can not discover the frequent itemset
with high sale profit.

Thus, some methods were proposed for
mining high utility itemsets from the
databases, such as Two-Phase [4], IIDS [5] and
IHUP [6], UP growth [7] used to prune search
space. Although it is shown to have good
performance, it cannot capture the complete
set of high utility itemsets since some high
utility patterns may be pruned during the
process. Two-Phase algorithm [4] proposed by
Liu et al. consists of two phases. In phase I,
Two-Phase algorithm propose a breadth first
search strategy to generate HTWUIs. It
generates candidate itemsets of length k from
HTWUIs of length (k-1) and prunes candidate
itemsets by TWDC property.In phase II, high
utility itemsets and their utilities are identified

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 52
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

from the HTWUIs by scanning original
database once.

Although Two-Phase algorithm effectively
reduces the search space by TWDC property
and captures the complete set of high utility
itemsets, it still generates too many candidates
for HTWUIs and requires multiple database
scans in phase II. To overcome this problem,Li
et al. [5] proposed an isolated items discarding
strategy, abbreviated as IIDS, to reduce the
number of candidates. By pruning isolated
items during the level-wise search, the number
of candidate itemsets for HTWUIs in phase I
can be reduced effectively. However, this
approach still scans database multiple times
and uses a candidate generation-and-test
scheme to find high utility itemsets.

Ahmed et al. [6] proposed a tree-based
algorithm, called IHUP, for mining high utility
itemsets. They use an IHUP-Tree to maintain
the information of high utility itemsets and
transactions. Every node in IHUP-Tree
consists of an item name, a support count, and
a TWU value. The HTWUIs are generated
from the IHUP-Tree by applying the FP-
Growth algorithm [2]. Thus, HTWUIs in phase
I can be found more efficiently without
generating candidates for HTWUIs. In step 3,
high utility itemsets and their utilities are
identified from the set of HTWUIs by
scanning the original database once.Although
IHUP finds HTWUIs without generating any
candidates for HTWUIs and achieves a better
performance than IIDS and Two-Phase, it still
produces too many HTWUIs in phase I. Note
that IHUP and Two-Phase produce the same
number of HTWUIs in phase I since they use
transaction-weighted utilization mining model
to overestimate the utilities of the itemsets.
However, this model may overestimate too
many low utility itemsets as HTWUIs and
produce too many candidate itemsets in phase
I.Such a large number of HTWUIs degrades
the mining performance in phase I in terms of
execution time and memory consumption.

4 PROPOSED SYSTEM
The framework of the proposed methods
consists of three steps: 1) Scan the database
twice to construct a global EUP Tree with the
first two strategies .2) recursively generate
PHUIs from global EUP-Tree and local EUP-
Trees by UP-Growth++ with the third and
fourth Strategies. 3) identify actual high utility

itemsets from the set of Note that we use a
new term “potential high utility itemsets” to
distinguish the patterns found by our methods
from HTWUIs since our methods are not
based on traditional TWU model. By our
effective strategies, the set of PHUIs will
become much smaller than the set of HTWUIs.

STRDEGY 1: Removing Global Unpromising
Items during Constructing a Global EUP-
Tree

The construction of a global EUP-Tree can be
performed with two scans of the original
database. The global EUP-Tree is depicted in
Figure 1 .In the first scan, TU of each
transaction is computed. At the same time,
TWU of each single item is also accumulated.
Allocate the memory for TWU using Random
Hashing memory. Allocate the memory space
for the 1st item based on the hash function

 h (k) = [(((a . k) + b) mod s) mod n]

 By TWDC property, an item and its supersets
are unpromising to be high utility item sets if
its TWU is less than the minimum utility
threshold. Such an item is called an
unpromising item. An item ip is called a
promising item if TWU(ip) |min_util|.
Otherwise it is called an unpromising item.The
unpromising items removed from orginal
database. New TU after pruning unpromising
items is called reorganized transaction utility
(abbreviated as RTU). RTU of a reorganized
transaction Tr is denoted as RTU(Tr).

STRADEGY 2: Reducing Global Node
Utilities during Constructing a Global EUP-
Tree
 It is shown that the tree-based
framework for high utility item set mining
applies the divide-and-conquer technique in
mining processes. Thus, the search space can
be divided into smaller subspaces. By
applying strategy RGN, the utilities of the
nodes that are closer to the root of a global
EUP-Tree are further reduced. RGN is
especially suitable for, the more items a
transaction contains, the more utilities can be
discarded by RGN. In following subsections,
we describe the process of constructing a
global EUP-Tree(Figure) with strategies RGU
and RGN.By the strategies, overestimated
utilities of item sets can be decreased and thus
the number of PHUIs can be further reduced.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 53
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Figure 1

STRADEGY 3: Removing Local Unpromising
Items during Constructing a Local UP-Tree
 The common method for generating
patterns in tree based algorithms contains
three steps: (1) Generate conditional pattern
bases by tracing the paths in the original tree,
(2) construct conditional trees by the
information in conditional pattern bases and
(3) mine patterns from the conditional trees.
However, strategies RGU and RGN cannot be
applied into conditional EUP-Trees since
actual utilities of items in different transactions
are not maintained in a global EUP-Tree. We
cannot know actual utilities of unpromising
items that need to be discarded in conditional
pattern bases unless an additional database
scan is performed. To overcome this problem,
a naïve solution is to maintain items’ actual
utilities in each transaction into each node of
global EUP-Tree. However, this is impractical
since it needs lots of memory space. In view of
this, we propose two strategies, named RLU
and RLN, that are applied in the first two
mining steps and introduced in this and next
subsections, respectively.

STRADEGY 4: Reducing Local Node Utilities
(RLN) during Constructing a Local EUP-Tree
 Since {im}-Tree must not contain the
information about the items below im in the
original EUP-Tree, we can discard the utilities
of descendant nodes related to im in the
original EUP-Tree while building {im}-Tree.
Because we cannot know actual utilities of the
descendant nodes, we use minimum item
utilities to estimate the discarded utilities. Path
utility of item ik in {im}-CPB is denoted as
pu(ik,{im}-CPB) and defined as the following
Equation 1:

 1

A conditional EUP-Tree can be constructed by
two scans of a conditional pattern base. It is
depicted in figure2. For the first scan, local
promising and unpromising items are learned
by summing the path utility for each item in
the conditional pattern base. Then, RLU is
applied to reduce overestimated utilities
during the second scan of the conditional
pattern base. When a path is retrieved,
unpromising items and their estimated utilities
are eliminated from the path and its path
utility. Then the path is reorganized by the
descending order of path utility of the items in
the conditional pattern base.

Figure 2(B-Tree with different strategies)

The complete set of PHUIs is generated by
recursively calling the procedure named EUP-
Growth. Initially,UP-Growth++ (TR, HR, null)
is called, where TR is the global EUP-Tree and
HR is the global header table. The procedure
of UP-Growth++ is shown in algorithm 1 and
2:

Subroutine: UP-Growth++(Tx, Hx, X)
Input:A EUP-Tree Tx , a header table Hx for
Tx, an itemset X, and a minimum utility
threshold min_util.

Output: All PHUIs in Tx.
(1)For each entry ik in Hx do

(2) Trace each node related to ik vai
ik.hlink and accumulate ik.nu to nusum(ik);
 /* nusum(ik):the sum of node utilities of
ik*/ Allocate the memory for nusum(ik)using RH .
(3) If nusum(ik) ≥ min_util,do
(4) Generate a PHUI ν=XUik;
(5) Set pu(ik) as estimated utility of ν;
(6) Construct ν-CPB;
(7) Put local promising items in ν-CPB into
Hν

(8) Apply DLU to reduce path utilities of the
paths;
(9)Apply Insert_Reorgnized_path to insert paths
into Tν with DLN;
(10) If Tν ≠ null then call UP-
Growth++(Tν,Hν,ν);
(11) End if

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 54
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

(12) End for
Algorithm: 1

Subroutine:Insert_Reorganized_Path(N,ix)
Line 1:If N has a child Niy,such that
Nix.item=ix,increment Nix.count by
Pj.count.otherwise,create a new child node Nix
with Nix.item=ix,
Nix.count=Pj.count,Nix.parent=N and
 Nix.nu=0.
Line 2:Increase Nix.nu by Eq(3).
Line 3:If there exists a node Nix in pj
where x+1<m’,
call Insert_Reorganized_path(Nix,ix+1)

Algorithm 2

5 EXPERIMENTAL EVALUATION
Performance of the proposed algorithms is
evaluated in this section. The experiments
were performed on a 2.80 GHz Intel Pentium
D Processor with 3.5 GB memory. The
operating system is Microsoft Windows 7. The
algorithms are implemented in Java language.
Both real and synthetic data sets are used in
the experiments. Synthetic data sets were
generated from the data generator Parameter
descriptions and default values of synthetic
data sets are shown in Table 3. Real world data
sets Accidents and chess are obtained from
FIMI Repository Foodmart is acquired from
Microsoft foodmart 2000 database. In the
above data sets, except Chain-store and
Foodmart, unit profits for items in utility
tables are generated between 1 and 1,000 by
using a log-normal distribution and quantities
of items are generated randomly between 1
and 10. The two real data sets Chain-store and
Foodmart already contain unit profits and
purchased quantities.

TABLE 3
PARAMETER SETTING DIFFERENT

DATASETS
PARAMETER DESCRIPTIONS DEFAU

LT

|D| Total number of transaction 100K

T Average transaction length 10

|I| Number of distinct items 1000

Q Maximum number of purchased
items in tranactions

10

6 PERFORMANCE COMPARISONS UNDER
DIFFERENT DATASETS

In this part, we show the performance
comparison on three real data sets: dense data
set Web log and sparse data sets Chain-store.
First, we show the results on sparse data set
Chain store in Fig. 3 and 3a. In this graph we
can observe that the performance of proposed
methods substantially outperforms that of
previous methods. The runtime of
EUPT&UPG++ is the best.

Runtime for various algorithms

0

1

2

3

20 30 40 50

Min Utility(%)

T
im

e
 i

n
 m

s

UP-GROWTH
UP-GROWTH+
UP-GROWTH++

Figure 3

Memory usage for various algorithms

0
2
4
6
8

20 30 40 50

Min utility(%)

C
a
n

d
id

a
te

(M
il

li
o

n
s
)

UP-GROWTH
UP-GROWTH+
UP-GROWTH++

Figure 3a

Experimental results on real sparse data sets
are shown in Fig. 10. The performance on
dense dataset Web log shown in Fig4 and 4a

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 55
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Runtime for various algorithms

0
2
4
6
8

20 30 40 50

Min Utility(%)

T
im

e
 i

n
 m

s

UP-GROWTH
UP-GROWTH+
UP-GROWTH++

Figure 4a

Memory usage for various algorithms

0
2
4
6
8

20 30 40 50

Min utility(%)

C
a
n

d
id

a
te

(M
il

li
o

n
s
)

UP-GROWTH
UP-GROWTH+
UP-GROWTH++

By the above results and discussions, we can
realize that Enhanced UP-Tree, Enhanced UP-
Growth, efficiently decrease the number of
candidates and make the performance much
better than that of the state-of-the-art previous
utility mining algorithms .

7 CONCLUSIONS
In this paper, proposed efficient algorithm
named UP-Growth++ for mining high utility
itemsets from transaction databases. A data
structure named EUP-Tree was proposed for
maintaining the information of high utility
itemsets. PHUIs can be efficiently generated
from EUP-Tree with only two database scans.
Moreover, developed several strategies to
decrease overestimated utility and enhance the
performance of utility mining. In the
experiments, both real and synthetic data sets
were used to perform a thorough performance
evaluation. Results show that the strategies
considerably improved performance by
reducing both the search space and the
number of candidates.

8 REFERENCES

1. R. Agrawal and R. Srikant, “Fast
Algorithms for Mining Association
Rules,” Proc. 20th Int’l Conf. Very
Large Data Bases (VLDB), pp. 487-499,
1994.

2. Han,J.,Pei., &Yin,Y.(2000) “ Mining

frequent patterns without candidate
generation” in proceeding of the 2007
international conference on
management of data,(pp.1-12).

3. U. Yun and J.J. Leggett, “WFIM:

Weighted Frequent Itemset Mining
with a Weight Range and a Minimum
Weight,” Proc. SIAM Int’l Conf. Data
Mining (SDM ’05), pp. 636-640, 2005.

4. Y. Liu, W. Liao, and A. Choudhary,

“A Fast High Utility Itemsets Mining
algorithm,” Proc. Utility-Based Data
Mining Workshop,2005.

5. Y.-C. Li, J.-S. Yeh, and C.-C. Chang,

“Isolated Items iscardingStrategy for
Hig Utility Itemsets,” Data and
Knowledge Eng., vol. 64, no. 1, pp.
198-217, Jan. 2008

6. C.F. Ahmed, S.K. Tanbeer, B.-S. Jeong,

and Y.-K. Lee, “Efficient Tree
Structures for High Utility Pattern
Mining in Incremental Databases,”
IEEE Trans. Knowledge and Data
Eng., vol. 21, no. 12,pp. 1708-1721,
Dec. 2009

7. Vincent S.Tseng,Bai-En Shil,Cheng-

Wei Wu “ Efficient Algorithms for
mining High Utility Itemsets from
Transactional Databases.

8. Frequent Itemset Mining

Implementations Repository,
http://fimi.cs.helsinki.fi/, 2012

IJSER

http://www.ijser.org/

